Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
BMC Public Health ; 21(1): 1230, 2021 06 26.
Article in English | MEDLINE | ID: covidwho-1282253

ABSTRACT

BACKGROUND: The COVID-19 pandemic has continued to pose a major global public health risk. The importance of public health surveillance systems to monitor the spread and impact of COVID-19 has been well demonstrated. The purpose of this study was to describe the development and effectiveness of a real-time public health syndromic surveillance system (ACES Pandemic Tracker) as an early warning system and to provide situational awareness in response to the COVID-19 pandemic in Ontario, Canada. METHODS: We used hospital admissions data from the Acute Care Enhanced Surveillance (ACES) system to collect data on pre-defined groupings of symptoms (syndromes of interest; SOI) that may be related to COVID-19 from 131 hospitals across Ontario. To evaluate which SOI for suspected COVID-19 admissions were best correlated with laboratory confirmed admissions, laboratory confirmed COVID-19 hospital admissions data were collected from the Ontario Ministry of Health. Correlations and time-series lag analysis between suspected and confirmed COVID-19 hospital admissions were calculated. Data used for analyses covered the period between March 1, 2020 and September 21, 2020. RESULTS: Between March 1, 2020 and September 21, 2020, ACES Pandemic Tracker identified 22,075 suspected COVID-19 hospital admissions (150 per 100,000 population) in Ontario. After correlation analysis, we found laboratory-confirmed hospital admissions for COVID-19 were strongly and significantly correlated with suspected COVID-19 hospital admissions when SOI were included (Spearman's rho = 0.617) and suspected COVID-19 admissions when SOI were excluded (Spearman's rho = 0.867). Weak to moderate significant correlations were found among individual SOI. Laboratory confirmed COVID-19 hospital admissions lagged in reporting by 3 days compared with suspected COVID-19 admissions when SOI were excluded. CONCLUSIONS: Our results demonstrate the utility of a hospital admissions syndromic surveillance system to monitor and identify potential surges in severe COVID-19 infection within the community in a timely manner and provide situational awareness to inform preventive and preparatory health interventions.


Subject(s)
COVID-19 , Pandemics , Hospitals , Humans , Ontario/epidemiology , SARS-CoV-2 , Sentinel Surveillance
SELECTION OF CITATIONS
SEARCH DETAIL